Find the coordinates of the centre of the circle inscribed in a triangle whose vertices are A(-36,7),B(20,7)and C(0,-8).
The coordinates of the in-centre whose vertices areA(x1,y1),B(xx,y2),and C(x3,y3) are[ax1+bx2+cx3a+b+c,ay1+by2+cy3a+b+c],Where a=BC,b=AC and c=ABLet A(−36,7)B(20,7) and (0,−8) be the vertices of the trangle ABCNow,a=BC=√(0−20)2+(−8−7)2 =√400+225 =√625=25,b=AC=√(0+36)2+(−8−7)2 =√1296+225 =√1521=39,and c=AB=√(20+36)2+(7−7)2 =√(56)2 =56,The coordinates of the centre of the triangle are(ax1+bx2+cx3a+b+c,ay1+by2+cy3a+b+c)or,[25×(−36)+39×20+56×025+39+56,25×7+39×7+56×(−8)25+39+56]or,[−990+780120,175+273−448120] or,[−120120,0120] or,(−1,0)Hence,the coordinates of the centre of the circle inscribed in a triangle whose vertices are(−36,7),(20,7) and (0,8) is (−1,0).