Find the ecentrictity, coordinates of foci, equations of directrices and length of the latus-rectum of the hyperbola(i) 9x2−16y2=144(ii) 16x2−9y2=−144(iiii) 4x2−3y2=36(iv) 3x2−y2=4(v) 2x2−3y2=5
(i) We have,9x2−16y2=144⇒9x2144−16y2144=1⇒x216−y29=1This is of the form⇒x2a2−y2b2=1,Where a2=16 and b2=9Eccentricity : The eccentricity e is given bye=√1+b2a2=√1+916=√2516=54Foci : The coordinates of the foci are (±ae,0) ie.,(±5,0)Equations of the directrices : The equations of the directices arex=±ae ie.,x=±165∵5x=±16⇒5x∓16=0Length of latus-rectum : The length of the latus-rectum=2b2a=2×94=92(ii) We have,16x2−9y2=−144⇒16x2144−9y2144=−1⇒x29−y216=−1This is of the form x2a2−y2b2=1,where a2=9 and b2=16∴a=3 and b=4Eccentricity : The eccentricity e is given bye=√1+a2b2=√1+916=√2516=54Foci : The coordinates of the foci are (0,± be)∴(0,± be)=(0,±4×54)=(0,±5)∴the coordinates of the foci are(0,±5)Equations of the directices : The equations of the directrices arey=± be⇒y=±45=±165⇒5y∓16=0Latus-rectum : The length of the latus-rectum=2a2b=2×94=92(iiii) We have,4x2−3y2=36⇒4x236−3y236=1⇒x29−y212=1This is of the form x2a2−y2b2=1,where a2=9 and b2=12∴a=3 and b=√12=2√3Eccentricity : The eccentricity e is given bye=√1+b2a2=√1+129=√1+43=√73Foci : The coordinates of the foci are (0,± ae,0)The equations of the directrices are√7x±3√3=0Latus-rectum : The length of the latus-rectum=2b2a=1×123=8± ac=±3×√7√3=±3×√7√3=±√3×√7=±√21(± ac,0)=(±√21,0)∴The coordinates of the foci are(±√21,0)Equation of the directrices : The equation of the directorices arex=± aex=±3×1√7√3=±3√3√7⇒√7x±3√3=0The equations of the directrices are √7x±3√3=0(iv) We have3x2−y2=4⇒3x24−y24=1x243−y24=1⇒x2(2√3)−y222=1This is of the formx2a2−y2b2=1,where a=2√3 and b=2Eccentricity : The eccentricity e is given bye=√1+b2a2=√1+443=√1+3=√4=2Foci : The coordinates of the foci are (± ae ,0)∴± ae=±2√3×2=±4√3The coordinates of the foci are(±4√3,0)Equations of the directrices : The equations of the directrices arex=±ae=±2√32=±1√3⇒√3x±1=0Latus-rectum : The length of the latus-rectum=2b2a∴2b2a=2×42=4√3.(v) We have2x2−3y2=5⇒2x25−3y25=1x252−y253=1⇒x2(5√2)2−y2(√53)=1This is of the formx2a2−y2b2=1,where a=√52and b=√53Eccentricity : The eccentricity e is given bye=√1+b2a2=√1+5352=√1+53×25=√1+23=√53Foci : The coordinates of the foci are (± ae ,0)∴± ae=±√52×√53=±5√6∴Foci :(±5√6,0)Equations of the directirices : The equations of the directireices arex=±ae=±√52√53=±√5√2×√3√5=±√32⇒x=±√3√2⇒√2x±√3=0Latus-rectum : The length of the latus-rectum =2b2a∴2b2a=2×3√52=10×√23×√5=103 √25