wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the ecentrictity, coordinates of foci, equations of directrices and length of the latus-rectum of the hyperbola(i) 9x216y2=144(ii) 16x29y2=144(iiii) 4x23y2=36(iv) 3x2y2=4(v) 2x23y2=5

Open in App
Solution

(i) We have,9x216y2=1449x214416y2144=1x216y29=1This is of the formx2a2y2b2=1,Where a2=16 and b2=9Eccentricity : The eccentricity e is given bye=1+b2a2=1+916=2516=54Foci : The coordinates of the foci are (±ae,0) ie.,(±5,0)Equations of the directrices : The equations of the directices arex=±ae ie.,x=±1655x=±165x16=0Length of latus-rectum : The length of the latus-rectum=2b2a=2×94=92(ii) We have,16x29y2=14416x21449y2144=1x29y216=1This is of the form x2a2y2b2=1,where a2=9 and b2=16a=3 and b=4Eccentricity : The eccentricity e is given bye=1+a2b2=1+916=2516=54Foci : The coordinates of the foci are (0,± be)(0,± be)=(0,±4×54)=(0,±5)the coordinates of the foci are(0,±5)Equations of the directices : The equations of the directrices arey=± bey=±45=±1655y16=0Latus-rectum : The length of the latus-rectum=2a2b=2×94=92(iiii) We have,4x23y2=364x2363y236=1x29y212=1This is of the form x2a2y2b2=1,where a2=9 and b2=12a=3 and b=12=23Eccentricity : The eccentricity e is given bye=1+b2a2=1+129=1+43=73Foci : The coordinates of the foci are (0,± ae,0)The equations of the directrices are7x±33=0Latus-rectum : The length of the latus-rectum=2b2a=1×123=8± ac=±3×73=±3×73=±3×7=±21(± ac,0)=(±21,0)The coordinates of the foci are(±21,0)Equation of the directrices : The equation of the directorices arex=± aex=±3×173=±3377x±33=0The equations of the directrices are 7x±33=0(iv) We have3x2y2=43x24y24=1x243y24=1x2(23)y222=1This is of the formx2a2y2b2=1,where a=23 and b=2Eccentricity : The eccentricity e is given bye=1+b2a2=1+443=1+3=4=2Foci : The coordinates of the foci are (± ae ,0)± ae=±23×2=±43The coordinates of the foci are(±43,0)Equations of the directrices : The equations of the directrices arex=±ae=±232=±133x±1=0Latus-rectum : The length of the latus-rectum=2b2a2b2a=2×42=43.(v) We have2x23y2=52x253y25=1x252y253=1x2(52)2y2(53)=1This is of the formx2a2y2b2=1,where a=52and b=53Eccentricity : The eccentricity e is given bye=1+b2a2=1+5352=1+53×25=1+23=53Foci : The coordinates of the foci are (± ae ,0)± ae=±52×53=±56Foci :(±56,0)Equations of the directirices : The equations of the directireices arex=±ae=±5253=±52×35=±32x=±322x±3=0Latus-rectum : The length of the latus-rectum =2b2a2b2a=2×352=10×23×5=103 25


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Hyperbola and Terminologies
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon