Find the equation of the hyperbola whose (i)foci are (6,4)and (-4,4) and eccentricity is 2.(ii)vertices are (-8,-1) and (16,-1) and focus is(17,-1)(iii)foci are (4,2) and (8,2) and eccentricity is 2.(iv)vertices are at (0±7)and foci at (0,±284).
(i) The centre of the hyperbola is the mi-point of the line joining the two foci.So, the coordinates of the centre are(6−42,4+42) i.e.,(1,4).Let conjugate axes and let e be the ecentricity.Then,the equation of the hyperbola is(x−1)2a2−(y−4)2b2=1 ...(i)Now, distance between two foci=2ae⇒√(6+4)2+(4−4)2=2ae[∵Foci=(6,4) and (−4,4)]⇒√(10)2=2ae⇒10=2ae⇒2ae=10⇒2a×2=10 [∵e=2]⇒a=104⇒a=52⇒a2=254Now,b2=a2(e2−1)⇒=254(22−1)⇒254×3=754Putting a2=254 and b2=754 in equation(i) we get,⇒(x−1)2254−(y−4)2754=1⇒4(x−1)225−4(y−4)275=1⇒4×3(x−1)2−4(y−4)2)75=1⇒12(x−1)2−4(y−4)2=75⇒12(x2+1−2x]−4[4y2+16−8y]=75⇒12x2+12−34x−4y2−64+32y=75⇒12x2−4y2−24x+32y−52−75=0⇒12x2−4y2−24x+32y−127=0This is the equation of the required hyperbola.(i) The cintre of the hyperbola is the mid-point of the line joining the two foci.So,the coordinates of the centre are(16−82,−1−12) i.e.,(4−1).Let2a and 2b the length of transverse and cinjugate axes and let e be the eccentricity.Then,the equation of the hyperbola is (x−4)2a2−(y+1)2b2=1 ...(i)Now,The distance between two vertices=2a∴√(16+8)2+(−1+1)2=2ae[∵vertices=(−8,−1) and (16,−1)]⇒24=2a⇒a=12⇒a2=144and, the distance between the focus and vertex is =ae-a∴√(17−16)2+(−1+1)2=ae−1[∵Focus=(17,−1)and vertex =(16,−1)]⇒√12=ae−a⇒ae−a=1⇒12×e−12=1 [∵ a=12]⇒12e=a+12⇒e=1312⇒e2=169144Now,b2=a2(e2−1)=(12)2(169144−1) (∵a=12 and e=1312)=144×(169−144144)=144×25144putting a2=144 and b2=25 in equation(i),we get(x−4)2144−(y+1)225=1⇒25(x−4)2−144(y+1)23600=1⇒25[x2+16−8x]−144[y2+1+2y]=3600⇒25x2+400−200x−144y2−144−288y=3600⇒25x2−144y2−200x−288y−3344=0This the equation of the required hyperbola.(iii)The centre of the hyperbola is the mid-point of the line joining the two foci.So, the coordinates of the centre are(4+82,2+22) i.e.,(6,2)Let 2a and 2b be the length of transverse and conjugate axes and let e be the eccentricity.Then,the equation of the hyperbola is(x−6)2a2−(y−2)2b2=1 ...(i)Now, distance between two foci=2ae⇒√(8−4)2+(2−2)2=2ae[∵Foci=(4,2) and (8,2)]⇒√(4)2=2ae⇒2ae=4⇒2×a×2=4 [∵e=2]⇒a=44=1⇒a2=1Now,b2=a2(e2−1)⇒b2=1(22−1) [∵e=2]⇒b2=4−1⇒b2=3Putting a2=1 and b2=3 in equation (i),we get(x−6)21−(y−2)23=1⇒3(x−6)2−(y−2)23=1⇒3(x−6)2−(y−2)2=3⇒3(x2+36−12x]−[y2+4−4y]=3⇒3x2+108−36x−y2−4+4y=3⇒3x2−y2−36x+4y+101=0This is the equation of the required hyperbola.(iv)Since,the vertices are on y-axis,so let the equation of the reuired hyperbola is x2a2−y2b2=−1 ...(i)The coordinates of its vertices and foci are(0,±be)respectively.∴b=7 [∵vertices=(0,±7)]⇒b2=49and,be=283[∵Foci=(0,±283)]⇒7×e=283⇒e=43⇒e2=169Now,a2=b2(e2−1)⇒a2=49(169−1)⇒a2=49×79⇒a2=3439Putting a2=3439 and b2=49 in equation(i),we getx23439−y249=−1This is the equation of the required hyperbola.