Find the locus of a point such that the sum of its distances from (0,2) and (0,-2) is 6.
Let p(h,k) be a point. Let the given points be A(0,2) and B(0,-2) According to the given conditin,AP+BP=6⇒√(h−0)2+(k−2)2+√(h−0)2+(k+2)2⇒√h2(k−2)+h2=6−√h2+(k+2)2Squaring both sides,we get:⇒h2+(k−2)2=36+h2+(k+2)2−12√h2+(k+2)2⇒h2+k2+4−4k=36+h2+k2+4+4k−12√h2+(k+2)2⇒3√h2+(k+2)2=9+2k⇒9(h2+k2+4+4k)=81+4k2+36k (Squaring both sides)⇒9h2+9k2+36+36k=81+4k2+36k⇒9h2+5k2−45=0Hence,the locus of(h,k) is9x2+5y2−45=0