For ΔABC, tan (B+C2)= _______.
tan A2
sin A2
cot B2
cot A2
In ΔABC, ∠A+∠B+∠C=180∘
∴ ∠B+∠C=180−∠A
or ∠B+∠C2=90∘−∠A2
Taking tan on both sides we get,
tan(∠B+∠C2)=tan(90−∠A2)
=cot(∠A2)
[tan (90−θ)=cot θ]
In ΔABC,(a+b+c)(tanA2+tanB2) is equal to
If sin A = n sin B, then n−1n+1 tan A+B2 =