For each pair of rational numbers, given below, verify that the multiplicatin is commutative :(i) −15 and 29(ii) 5−3 and 13−11(iii) 3 and −89(iv) 0 and −1217
(i) −15 and 29−15×29=(−1)×29×5=−245And,29×(−15)=2×(−1)9×5=−245∴−15×29=29×−15(ii) 5−3 and 13−115−3×13−11=5×13(−3)×(−11)=6533And,13−11×5−3=13×5(−3)×(−11)=6533∴5−3×13−11=13−11×5−3(iii) 3 and −8931×−89=1×(−8)1×3=−83And,−89×31=(−8)×13×1=−83∴3×−89=89×3(iv) 0 and −1217=0×−1217=0×(−12)1×17=0And−1217×0=(−12)×017×1=0∴0×(−12)17=(−12)17×0