The correct option is A p(x+π)=p(x) for all x
g(x+π)=x+π∫0|sinx| dx=π∫0|sinx| dx+x+π∫π|sinx| dx
We know that
x+T∫Tf(x) dx=x∫0f(x) dx, where T is the period of the f(x)
Using the above property,
g(x+π)=π∫0|sinx| dx+x∫0|sinx| dx (∵π is period of |sinx|)=2+g(x)
Now,
p(x+π)=g(x+π)−2π(x+π)=2+g(x)−2πx−2=g(x)−2πx=p(x)
So, p(x+π)=p(x) for all x