The correct option is A 0
S1=k∑n=02n+3(n+1)2(n+2)2=k∑n=01(n+1)2−1(n+2)2=(11−14)+(14−19)+(19−116)+...+(1(k+1)2−1(k+2)2)=1−1(k+2)2Now, k→∞S1=limk→∞(1−1(k+2)2)=1
S2=k∑n=124n2−1=k∑n=112n−1−12n+1=(11−13)+(13−15)+(15−17)+...+(12k−1−12k+1)=1−12k+1Now, k→∞S2=limk→∞(1−12k+1)=1∴S1−S2=1−1=0