The correct option is A -3 and 2
Given, p(x)=x3−3x2−4x−12 and p(2)=0
x=2⇒x−2=0∴x−2 is the factor of p(x).
So, if x3−3x2−4x−12 is divided by x - 2 the remainder will be zero.
By long division, x−2x2 − x − 6)¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯x3−3x2−4x−12 −x3∓2x2––––––––––– −x2−4x∓x2±2x––––––––––– −6x−12∓6x∓12––––––––––– 00
∴x3−3x2−4x−12=(x−2)(x2−x−6)
On factorising x2−x−6=x2+3x−2x−6=x(x+3)−2(x+3)=(x+3)(x−2)
x+3=0; x−2=0∴x=−3; 2
So, the remaining two Zeroes are -3 and 2.