If a=1+i, then a2 equals
1 - i
2i
(1 + i) (1 - i)
i - 1
a = 1 + i
On squaring both the sides, we get,
a2=(1+i)2⇒ a2=1+i2+2i⇒ a2=1−1+2i (∵ i2=−1)⇒ a2=2i
1+2i+3i21−2i+3i2 equals