Given (x−2) is a factor of q(x)=px2+5x+r.
By factor theorem, if (x−a)is a factor of p(x),then p(a)=0.
Using factor theorem,q(2)=0p×22+5×2+r=04p+r=−10...(i)
(x−12)is also a factor of q(x).Using factor thorem,q(12)=0p×(12)2+5×(12)+r=0p4+52+r=0p+4r=−10...(ii)
Subtracting (ii) from (i), we get:(4p+r)−(p+4r)=−10−(−10)3p−3r=0p=r⇒p−r=0