wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If cos5x+cos5(x+2π3)+cos5(x+4π3)=0,
then the number of solution(s) in [0, 2π] is

Open in App
Solution

cos5x+cos5(x+2π3)+cos5(x+4π3)=0(eix+eix)5+(ωeix+ω2eix)5+(ω2eix+ωeix)5=0 5C0 ei5x+ 5C1 ei3x+ 5C2 eix+ 5C5 ei5x+ 5C0 ω2 ei5x+ 5C1 ei3x+ 5C2 ω eix+ 5C5 ω ei5x+ 5C0 ω ei5x+ 5C1 ei3x+ 5C2 ω2 eix+ 5C5 ω2 ei5x=0 5C1 ei3x+ 5C4 ei3x=02cos3x=0cos3x=03x=(2n+1)π2, nIx={π6, π2, 5π6 7π6, 3π2, 11π6}
Total number of solutions 6.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Solving Trigonometric Equations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon