If cot θ=1√3,find the value of 1−cos2θ2−sin2θ
Given cot θ=1√3
We know that, 1+cot2 θ=cosec2 θ
⇒1+13=cosec2 θ
⇒cosec θ=2√3
⇒sin θ=√32
and cos θ=√1−sin2 θ=12
Now, 1−cos2θ2−sin2θ=1−142−34=35