Iff(x)=2tan−1x+sin−1(2x1+x2),x>1, then f(5) is equal to
A
π2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
tan−1(65156)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
4tan−1(5)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
π
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is Dπ f(x)=2tan−1x+sin−1(2x1+x2)Putx=tanθ,θ∈(π4,π2)asx∈(1,∞)f(x)=2tan−1tanθ+sin−1(2tanθ1+tan2θ)=2θ+sin−1(sin2θ)....(1)Since,sin−1sinx=x,x∈[−π2,π2]Now,π4<θ<π2⇒π2<2θ<π⇒−π<−2θ<−π2⇒0<π−2θ<π2∴f(x)=2θ+π−2θ=π∴f(5)=π