If (1+i)22−i=x+iy, find x+y.
(1+i)22−i=x+iy
⇒ (1+2i−1)2−i=x+iy⇒ 2i2−i=x+iy⇒ 2i(2+i)(2−i)(2+i)=x+iy [Rationalizing the denominator]⇒ 2(2i−1)4+1=x+iy⇒ 4i−25=x+iy ⇒ −25+i45=x+iy
Comparing the real and imaginary parts, we get
x=−25,y=45x+y=25