If 1−ix1+ix=a+ib,then a2+b2=
1
-1
0
none of these
1−ix1+ix=a+ib
Taking modulus on both the sides, we get :
∣∣1−ix1+ix∣∣+|a+ib|⇒ √12+x2√1+ix=√a2+b2⇒ √a2+b2=1
Squaring both the sides, we get :
a2+b2=1
If a=cos α cos β+sin α sin β cos γ, b=cos α sin β−sin α cos β cos γ and c=sin α sin γ then a2+b2+c2 is equal to
If the eccentricities of the hyperbolas x2a2−y2b2=1 and y2b2−x2a2=1 be e and e1, then 1e2+1e21=