The correct option is C p−q=1
Put x=tan4θI=∫cot(2tan−1√secθ−tanθsecθ+tanθ )dxI=∫cot(2tan−1√1−sin θ1+sin θ )dxI=∫(cot(2tan−1√(cosθ2−sinθ2)2(cosθ2+sinθ2)2 )dx∫(cot(2tan−1(tanπ4−tanθ21+tanθ2tanπ4 )))dx=∫cot(2tan−1tan(π4−θ2))dx=∫cot(π2−θ)dx=∫tanθ dx=∫x14dx=4 x545+C
On comparing, we get p=5 and q=4 .