wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If L=limx121+x3+222+x3+...+x2x+x3 , then the value of 18L is

Open in App
Solution

Let S=121+x3+222+x3+...+x2x+x3S<121+x3+221+x3+...+x21+x3=11+x3(12+22+...+x2)=x(x+1)(2x+1)6(1+x3)S>12x+x3+22x+x3+...+x2x+x3=1x+x3(12+22+...+x2)=x(x+1)(2x+1)6(x+x3)

Now, using Sandwhich theorem, we have
x(x+1)(2x+1)6(x+x3)<S<x(x+1)(2x+1)6(1+x3)limx2x3+3x2+x6(x+x3)<limxS<limx2x3+3x2+x6(1+x3)limx2+3x+1x26(1x2+1)<limxS<limx2+3x+1x26(1x3+1)26<limxS<2613<limxS<13L=limxS=1318L=6

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Method of Difference
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon