Let S=121+x3+222+x3+...+x2x+x3S<121+x3+221+x3+...+x21+x3=11+x3(12+22+...+x2)=x(x+1)(2x+1)6(1+x3)S>12x+x3+22x+x3+...+x2x+x3=1x+x3(12+22+...+x2)=x(x+1)(2x+1)6(x+x3)
Now, using Sandwhich theorem, we have
x(x+1)(2x+1)6(x+x3)<S<x(x+1)(2x+1)6(1+x3)⇒limx→∞2x3+3x2+x6(x+x3)<limx→∞S<limx→∞2x3+3x2+x6(1+x3)⇒limx→∞2+3x+1x26(1x2+1)<limx→∞S<limx→∞2+3x+1x26(1x3+1)⇒26<limx→∞S<26⇒13<limx→∞S<13∴L=limx→∞S=13⇒18L=6