If (1−i1+i)100=a+ib, find (a, b).
(1−i1+i)100=a+ib⇒ ((1−i)(1−i)(1+i)(1−i))100=a+ib [Rationalizing the denominator]⇒ ((1−2i−1)(1+1))100=a+ib⇒ (−2i2)100=a+ib⇒ (−i)100=a+ib⇒ 1=a+ib
Comparing, we get (a. b) = (1, 0)