If (1+i1−i)3−(1−i1+i)3=x+iy, find (x,y)
If (1+i1−i)3−(1−i1+i)3=x+iy⇒ ((1+i)(1+i)(1−i)(1+i))3−((1−i)(1−i)(1+i)(1−i))3=x+iy [Rationalizing the denominator]⇒ (1+2i−11+1)3−(1−2i−11+1)3=x+iy⇒ (2i2)3−(−2i2)3=x+iy⇒ i3−(−i)3=x+iy⇒ −i−i=x+iy⇒ −2i=x+iy
Comparing the real and imaginary parts,
(x, y) = (0, -2)