If(xa)n+(yb)n=2 then dydx at (a,b) is
a/b
-a/b
b/a
-b/a
dydx=−bnan.xn−1yn−1
If y = (1+x)(1+x2)(1+x4)....(1+x2n), then dydx at x = 0 is
If √1−x2n+√1−y2n=a(xn−yn) then √1−x2n1−y2n.dydx=