If ∣∣∣z−4z∣∣∣=2, then the greatest value of |z| is
√5+1
Given: ∣∣∣z−4z∣∣∣=2
We have,
|z|=∣∣∣z−4z+4z∣∣∣≤∣∣∣z−4z∣∣∣+4|z|=2+4|z|⇒|z|2≤2|z|+4⇒(|z|−1)2≤5⇒−√5+1≤|z|≤1+√5
Also, for z=√5+1,∣∣∣z−4z∣∣∣=2
Therefore, the greatest value of |z| is √5+1 which is attained when z=√5+1