If LM || AB, AL = 2x - 4, AC = 4x, BM = x - 2 and BC = 2x + 3 with x >0, then x is:
2 units
In △ ABC,
Given : LM||AB
⇒CLAL=CMBM(By basic proportionality theorem)
By adding 1 on both the sides we get,
⇒CLAL+1=CMBM+1
⇒CL+ALAL=CM+BMBM
⇒ACAL=BCBM
⇒4x2x−4=2x+3x−2
⇒4x2−8x=4x2−8x+6x−12
⇒6x=12
⇒x=2 units