In △ ABC,
Given : LM||AB ⇒CLAL=CMBM(By basic proportionality theorem) By adding 1 on both the sides we get, ⇒CLAL+1=CMBM+1 ⇒CL+ALAL=CM+BMBM ⇒ACAL=BCBM ⇒4x2x−4=2x+3x−2 ⇒4x2−8x=4x2−8x+6x−12 ⇒6x=12 ⇒x=2 units
If LM ∥ AB, AL=x-3, AC=2x, BM=x-2, BC=2x+3. What is value of AC?
__
If LM∥AB,AL=x−3,AC=2x,BM=x−2,BC=2x+3. What is value of AC ?
In the given figure LM||AB. If AL =x−3, AC =2x, BM=x−2 and BC =2x+3, find the value of x.