Ifsinθ1+θ2=1andcosθ1-θ2=1,0°<θ1+θ2≤90°,θ1≥θ2then find θ1andθ2.
Given data: sinθ1+θ2=1 and cosθ1-θ2=1
Finding the value of θ1+θ2:
Since,
sin(θ1+θ2)=1⇒sin(θ1+θ2)=sinπ2⇒θ1+θ2=π2∴θ1+θ2=π2.......(1)
Finding the value of θ1-θ2:
cos(θ1-θ2)=1⇒cos(θ1-θ2)=cos0o⇒θ1-θ2=0o∴θ1-θ2=0o.........(2)
Adding equation (1) and (2) we get,
(θ1+θ2)+(θ1-θ2)=π2+0o⇒θ1+θ2+θ1-θ2=π2⇒2θ1=π2⇒θ1=π4∴θ1=π4
And Substituting the value of θ1 in equation (1)
θ1+θ2=π2⇒θ2=π2-θ1⇒θ2=π2-π4⇒θ2=π4∴θ2=π4
Hence, the values of θ1and θ2is π4and π4respectively.
If sinθ1-θ2=12 and cosθ1+θ2=12,0°<θ1+θ2<90°,θ1>θ2, then find θ1and θ2.