If sinA=12 and cosB=1√2, then find the value of (A+B).
30∘
45∘
75∘
15∘
sinA=12
⇒A=30∘
cosB=1√2
⇒B=45∘ Thus, A + B = (30∘ + 45∘) = 75∘
Given that sinA=12 and cosB=1√2, then find the value of (A+B).
Given that sin A = 12 and cos B = 1√2, then the value of (A + B) is ____. (Here, 0<A+B≤90∘)
If sin(A+B)=1,cos(A−B)=1, 0∘≤A+B≤90∘, Find A and B.
Given that sin A= 12 and cosB =1√2, then find the value of (A+B) (where A and B are acute angles).
Given that sin A=12 and cosB=1√2, then the value of (A + B) is: