If sinA+sin2A = 1 and acos12A+bcos10A+ccos8A+dcos6A−1 = 0 then a+b+c+d =
⇒(sinA = 1−sin2A
⇒sinA = cos2A (Usingcos2A=1−sin2A)
⇒sin2A = cos4A (on~squaring~both~sides)
⇒1−cos2A = cos4A
⇒1 = cos2A+cos4A
⇒13 = (cos2A+cos4A)3 (taking cube of both sides)
⇒1 = cos12A+3cos10A+3cos8A+cos6A
[Using,(a+b)3=a3+3a2b+3ab2+b3]
⇒0 = cos12A+3cos10A+3cos8A+cos6A−1
∴ cos12A+3cos10A+3cos8A+cos6A−1=0
On comparing the above equation with
acos12A+bcos10A+ccos8A+dcos6A−1 = 0
we have, a = 1, b = 3, c = 3, d = 1
∴a+b+c+d =1+3+3+1= 8