If tan A and tan B are the roots of abx2−c2x+ab=0 where a, b, c are the sides of the triangle ABC, then the value of sin2A+sin2B+sin2C is
2
Given tan A and tan B are the roots of the equation abx2−c2x+ab=0∴tanA+tanB=c2ab,tanA tanB=1⇒A+B=π2⇒C=π2∴sin2A+sin2B+sin2C=sin2(π2−B)+sin2B+sin2π2cos2B+sin2B+1=2