Given, b−c,2bx,b−a are in HP
⇒ 2b−x=2/(1/b−c+1/b−a) [if a, b, c are in HP then b=2/(1/a+1/c)
⇒ x=2n−2(b−c)(b−a)(b−a)+(b−c)
Claim: a−x2, b−x2, c−x2 are in G.P
(h−x2)2=(b−b+(b−c)(b−a)(b−a)+(b−c))=(b−c)2(b−a)2((b−a)+(b−c))2
(a−x2)(c−x2)=[(a−b)+(b−c)(b−a)(b−a)+(b−c)][(c−b)+(b−c)(b−a)(b−a)+(b−c)]
=[−(b−a)+(b−c)(b−a)(b−a)+(b−c)][−(b−c)+(b−c)(b−a)(b−a)+(b−c)]
=(b−a)(b−c)[−1+b−c(b−a)+(b−c)][−1+(b−a)(b−a)+(b−c)]
=(b−a)(b−c)[−(b−a)−(b−c)+(b−c)(b−a)+(b−c)][−(b−a)−(b−c)+(b−a)(b−a)+(b−c)]
=(b−a)(b−c)(−(b−a))(−(b−c))[(b−a)+(b−c)]2
=(b−a)2(b−c)2[(b−a)+(b−c)]2
=(b−x2)2
We know that a, b, c are in G.P if b2=ac
∵ (b−x2)2=(a−x2)(c−x1)
⇒ (a−x2), (b−x2), (c−x2) are in G.P