wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If un=cosnθ+sinnθ, then 2u63u4+1=0.

A
True
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
False
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A True
Given

un=cosnθ+sinnθ

u6=cos6θ+sin6θ

u6=(cos2θ)3+(sin2θ)3

u6=(cos2θ+sin2θ)33(cos2θ)(sin2θ)(cos2θ+sin2θ)

u6=13cos2θsin2θ(1)

u4=cos4θ+sin4θ

u4=(cos2θ)2+(sin2θ)2

u4=(cos2θ+sin2θ)22(cos2θ)(sin2θ)

u4=12cos2θsin2θ(2)

2u63u4+1

From (1)&(2)

2(13cos2θsin2θ)3(12cos2θsin2θ)+1

26cos2θsin2θ)3+6cos2θsin2θ)+1
23+1

0


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Identities
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon