wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If the sides a, b, c of a ΔABC are in H.P., prove that sin2A2,sin2B2,sin2C2 are in H.P.

Open in App
Solution

sin2 A2,sin2 B2 and sin2 C2 are in H.P. 1sin2 A2,1sin2 B2 and 1sin2 C2 are in A.P. 1sin2 B21sin2 A2=1sin2 C21sin2 B2 sin2 A2sin2 B2sin2 A2 sin2 B2=sin2 B2sin2 C2sin2 B2sin2 C2 sin(A+B2)sin(AB2)sin2 A2=sin(B+C2)sin(BC2)sin2 C2 cos(C2)sin(AB2)sin2 A2=cos(A2)sin(BC2)sin2 C2 [ As A+B+C=π] sin2 C2 cos (C2) sin (AB2)=sin2 cos (A2) sin (BC2) 2 sin C2 sin C2 cos (C2) sin (AB2)=2 sin A2 sin A2 cos (A2) sin (BC2) sin C2 sin C sin (AB2)= sin A2 sin A sin (BC2) [ sin 2θ=2 sinθ cosθ] sin C cos (A+B2) sin (AB2)= sin A cos (B+C2) sin (BC2) [As A+B+C=π] sin C (sin Asin B2)=sin(sin Bsin C2) [ sin Csin D=2 cos (C+D2)sin(CD2)] sin C (sin Asin B) = sin A (sin Bsin C) ck (akbk) = ak (bkck) (sin Aa=sin Bb=sin Cc=k(say)) cacb=abac 2ac=ab+bc 2b=1c+1a [multiplying both the sides by abc] a, b, c are in H.P.PQ. In any ΔABC, prove that :a(cos Ccos B)=2(bc) cos2 A2Let a=k sin Aa(cos Ccos B)=2(bc) cos2 A2LHS=a(cos Ccos B)=a2.sin C+B2 .sin BC2=2k sin A sin πA2 .sin BC2=2k2sin A2.cosA2.cosA2.sinBC2=2k cos2 A2 (2sinBC2.sinA2)=2k cos2 A2 (2sinBC2.sinπ(B+C)2)=2k cos2 A2 (2sinBC2.cos(B+C)2)=2k cos2 A2 (sin Bsin C)=2 cos2 A2 (k sin B k sin C)=2 cos2 A2 (bc)=RHS


flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Sine Rule
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon