If the sides a, b, c of a ΔABC are in H.P., prove that sin2A2,sin2B2,sin2C2 are in H.P.
sin2 A2,sin2 B2 and sin2 C2 are in H.P.⇒ 1sin2 A2,1sin2 B2 and 1sin2 C2 are in A.P.⇒ 1sin2 B2−1sin2 A2=1sin2 C2−1sin2 B2⇒ sin2 A2−sin2 B2sin2 A2 sin2 B2=sin2 B2−sin2 C2sin2 B2sin2 C2⇒ sin(A+B2)sin(A−B2)sin2 A2=sin(B+C2)sin(B−C2)sin2 C2⇒ cos(C2)sin(A−B2)sin2 A2=cos(A2)sin(B−C2)sin2 C2 [∵ As A+B+C=π]⇒ sin2 C2 cos (C2) sin (A−B2)=sin2 cos (A2) sin (B−C2)⇒ 2 sin C2 sin C2 cos (C2) sin (A−B2)=2 sin A2 sin A2 cos (A2) sin (B−C2)⇒ sin C2 sin C sin (A−B2)= sin A2 sin A sin (B−C2) [∵ sin 2θ=2 sinθ cosθ]⇒ sin C cos (A+B2) sin (A−B2)= sin A cos (B+C2) sin (B−C2) [As A+B+C=π]⇒ sin C (sin A−sin B2)=sin(sin B−sin C2) [∵ sin C−sin D=2 cos (C+D2)sin(C−D2)]⇒ sin C (sin A−sin B) = sin A (sin B−sin C)⇒ ck (ak−bk) = ak (bk−ck) (sin Aa=sin Bb=sin Cc=k(say))⇒ ca−cb=ab−ac⇒ 2ac=ab+bc⇒ 2b=1c+1a [multiplying both the sides by abc]⇒ a, b, c are in H.P.PQ. In any ΔABC, prove that :a(cos C−cos B)=2(b−c) cos2 A2Let a=k sin Aa(cos C−cos B)=2(b−c) cos2 A2LHS=a(cos C−cos B)=a2.sin C+B2 .sin B−C2=2k sin A sin π−A2 .sin B−C2=2k2sin A2.cosA2.cosA2.sinB−C2=2k cos2 A2 (2sinB−C2.sinA2)=2k cos2 A2 (2sinB−C2.sinπ−(B+C)2)=2k cos2 A2 (2sinB−C2.cos(B+C)2)=2k cos2 A2 (sin B−sin C)=2 cos2 A2 (k sin B − k sin C)=2 cos2 A2 (b−c)=RHS