The correct option is C 12n
Given:cosθ.cos2θ.cos22θ⋯cos2n−1θ,θ=π2n+1
Using the result:
∴cosθ.cos2θ.cos22θ⋯cos2n−1θ=sin2nθ2nsinθ
⇒cosθ.cos2θ.cos22θ⋯cos2n−1θ=sin(π2n+1)2n2nsin(π2n+1)
⇒cosθ.cos2θ.cos22θ⋯cos2n−1θ=sin(2n2n+1)π2nsin(π2n+1)
⇒cosθ.cos2θ.cos22θ⋯cos2n−1θ=sin(2n+1−12n+1)π2nsin(π2n+1)
⇒cosθ.cos2θ.cos22θ⋯cos2n−1θ=sin(π−π2n+1)2nsin(π2n+1)
⇒cosθ.cos2θ.cos22θ⋯cos2n−1θ=sin(π2n+1)2nsin(π2n+1)
⇒cosθ.cos2θ.cos22θ⋯cos2n−1θ=12n