The correct option is C 10
Given,
Let f(x)=x3+(3a+1)x2+bx−18
Since (x−1) and (x+2) are the factors ofx3+(3a+1)x2+bx−18
⇒x=1 and x=−2 satisfyf(1) = 0 and f(-2) = 0
f(1)=0
⇒13+(3a+1)+b−18=0⇒3a+b=16 ...(1)f(−2)=0⇒(−2)3+(3a+1)(−2)2−2b−18=0⇒−8+12a+4−2b−18=0⇒6a−b=11 ...(2)
On solving equations (1) and (2), we get,
a=3,b=7
∴a+b=10