If x=9+4√5, then √x−1x= _______.
1
16
4
2√5
x=9+4√5
x=4+5+4√5
=(2)2+(√5)2+2(2)(√5)
=(2)2+2(2)(√5)+(√5)2
=(2+√5)2
∴√x=2+√5……(i)
1√x=12+√5×2−√52−√5
=2−√54−5
=√5−2……(ii)
√x−1√x=2+√5−(√5−2) (from (i) and (ii))
=2+√5−√5+2
=4
If x=√5+2, then find the value of x−1x.
What are the values of x and y, if (x + 1, 4) = (5, y – 1)?
If x=√5−2√5+2 then x2 = ___