The correct option is A −2(x2+y2)
Given: (x−iy)3=u+iv
⇒x3−y3(i)3−3x2yi+3xy2(i)2=u+iv
⇒x3+y3i−3x2yi−3xy2=u+iv
⇒(x3−3xy2)+i(y3−3x2y)=u+iv
On equating real and imaginary parts, we get
u=x3−3xy2 and v=y3−3x2y
ux+vy=x3−3xy2x+y3−3x2yy
=x2−3y2−3x2+y2
=−2x2−2y2
=−2(x2+y2)
∴ux+vy=−2(x2+y2)