Given data, (x+iy)3=u+iv
⇒x3+(iy)3+3x.iy(x+iy)=u+iv
⇒x3+y3(i)3+3x2yi+3xy2(i)2=u+iv
⇒x3−y3i+3x2yi−3xy2=u+iv
⇒(x3−3xy2)+i(3x2y−y3)=u+iv
Comparison
on equating real and imaginary parts, we get
u=x3−3xy2 and v=3x2y−y3
ux+vy=x3−3xy2x+3x2y−y3y
=x2−3y2+3x2−y2
=4x2−4y2
=4(x2−y2)
∴ux+vy=4(x2−y2)