If x+iy=√a+ibc+id,then write the value of (x2+y2)2.
x+iy=√a+ibc+id ...(1)
Taking conjugates on both sides we get
x−iy=√a−ibc−id (2)
Multiplying (1) and (2) we get
(x+iy)(x−iy)=√a+ibc+id×√a−ibc−id⇒ x2+y2=√(a+ib)(a−ib)(c+id)(c−id)⇒ x2+y2=√a2+b2c2+d2(x2+y2)2=a2+b2c2+d2