If y=(sinx2+cosx2)2,find dydx at x=π6.
We have,
=dydx=ddx(sinx2+cos x2)2
=ddx(sin2x2+cos2x2+2sinx2.cosx2)
=ddx(1+sin x) [∵ sin2θ+cos2θ=1sin2θ=2sin θ.cos θ]
=0+cos x
=cos x
dydx at x=π6
=cos π6
=√32