Ify=sin−1x,then (1−x2)y2−xy1
0
1
2
2y
y1=1√1−x2⇒(1−x2)y21=1⇒(1−x2)2y1y2−2xy21=0
Ify=esin−1x, then (1−x2)y2−xy1=
Ify=a cos(log x)+bsin(log x) then x2y2+xy1=