The correct option is D All of these
Given |z1|=1,|z2|=1
Let z1=cosθ1+isinθ1,z2=cosθ2+isinθ2
⇒a=cosθ1,b=sinθ1,c=cosθ2,d=sinθ2
Given Re(z1¯z2)=0
⇒cos(θ1−θ2)=0
⇒θ1−θ2=π2, i.e., θ1=π2+θ2 ⋯(i)
Now,w1=a+ic
=cosθ1+icosθ2=cosθ1+isinθ1 [Using (i)]
⇒|w1|=1
Similarly, |w2|=1
Now, w1¯w2=(cosθ1+isinθ1)(cosθ2−isinθ2)
=cos(θ1−θ2)+isin(θ1−θ2)
=cosπ2+isinπ2=i
⇒Re(w1¯w2)=0