If z=cosπ4+i sinπ6, then
|z|=√32, arg (z)=tan−11√2
|z|=√32, arg (z)=tan−11√2z=cos π4+i sinπ6⇒ z=1√2+12i⇒ z=√(1√2)2+14⇒ |z|=√12+14⇒ |z|=√34⇒ |z|=√32tan α=∣∣Im(z)Re(z)∣∣=1√2⇒ α=tan−1(1√2)
Since, the point z lies in the first quadrant.
Therefore, arg (z)=α=tan−1(1√2)