If z=11−cosθ−i sinθ,then Re(z)=
12
z=11−cosθ−i sinθz=11−coθ−isin θ×1−coθ+i sinθ1−coθ+i sin θ⇒ z=1−cosθ+i sin θ(1−cos θ)2−(i sinθ)2⇒ z=1−cosθ+i sin θ1+cos2θ−2cosθ+sin2θ⇒ z=1−cosθ+isinθ1+1−2cosθ⇒ z=1−cosθ+isinθ2(1−cosθ)⇒ z=1−cos θ+i sin θ2(1−cos θ)⇒ Re(z)=(1−cosθ)2(1−cosθ)=12