If z=1+7i(2−i)2, then
amp (z)=3π4
z=1+7i(2−i)2⇒ z=1+7i4+i2−4i⇒ z=1+7i4−1−4i [∵ i2=−1]⇒ z=1+7i3−4i⇒ z=1+7i3−4i×3+4i3+4i⇒ z=3+4i+21i+28i29−16i2⇒ z=3−28+25i9+16⇒ z=−25+25i25⇒ z=−1+itan α=∣∣Im(z)Re(z)∣∣=1⇒ α=π4
Since, z lies in the second quadrant.
Therefore, amp (z) = π−α
=π−π4=3π4