In an isosceles-trapezium, show that the opposite angles are supplementary.
Given : ABCD is isosceles trapezium.
AD=BC
To Prove :
(i) ∠A+∠C=180∘
(ii)∠B+∠D=180∘
Proof :
In isosceles trapezium ABCD, AB∥CD
then
∠D=∠C [Since, base angles of isosceles trapezium are equal]
⇒ ∠A+∠D=180∘ [Since, AB∥CD]
⇒ ∠A+∠C=180∘ ---(1)
Now,
∠A+∠C+∠B+∠D=360∘ [Since, sum of the angles of quadrilateral]
⇒180∘+∠B+∠D=360∘
⇒∠B+∠D=360∘−180∘
⇒∠B+∠D=180∘ ---(2)
From (1) and (2),
Opposite angles of isosceles trapezium are supplementary.
Hence, proved.