In any ΔABC, prove that :b sec B+c sec Ctan B+tan C=c sec C+a sec Atan C+tan A=a sec A+b sec Btan A+tan B
b sec B+c sec Ctan B+tan C=c sec C+a sec Atan C+tan A=a sec A+b sec Btan A+tan Bb sec B+c sec Ctan B+tan C=k sin B sec B+k sin C sec Ctan B+tan C=k sin B1cos B+k sin C1cos Ctan B+tan C=k sin B+k tan Ctan B+tan C=k(tan B+tan C)tan B+tan C=kSimilarly,csec C+a sec Atan C+tan A=kSimilary,asec A+b sec Btan A+tan B=k