\(\text{In given figure, ABCD is a cyclic} (q)~ 65^\circ\\
~~~\text{quadrilateral whose side AB is a diameter}\\
~~~ \text{of the circle through A, B, C, D.}\\
~~~\text{If} ~\angle ADC = 130^\circ, \text{then find}~ \angle BAC =
40∘
Since ABCD is a cyclic quadrilateral.
∴∠ADC+∠ABC=180∘⇒130∘+∠ABC=180∘⇒∠ABC=50∘
Since ∠ACB is the angle in a semicircle.
∴∠ACB=90∘
Now, in ΔABC, we have
∠BAC+∠ACB+∠ABC=180∘⇒∠BAC=90∘+50∘=180∘⇒∠BAC=40∘