In parallelogram ABCD, E is the mid-point of side AB and CE bisects angle BCD.Prove that :(i) AE=AD.(ii) DE bisects and ∠ADC and(iii) Angle DEC is a right angle.
Given : || gm ABCD in which E is mid-point of AB and CE bisects ∠BCD.To Prove : (i) AE = AD(ii) DE bisects ∠ADC(iii) ∠DEC=90∘Const. Join DEProof : (i) AB || CD (Given)and CE bisects it.∴ ∠1=∠3 (alternte ∠s) ...(i)But ∠1=∠2 (Given) ...(ii)From (i) & (ii) ∠2=∠3∴ BC=BE (sides opp. to equal angles)But BC=AD (opp. sides of || gm)and BE=AE (Given) AD=AE∴ ∠4=∠5 (∠s opp. to equal sides)But ∠5=∠6 (alternate ∠s)⇒ ∠4=∠6∴ DE bisects ∠ADC.Now AD || BC⇒ ∠4=∠6∴ DE bisects ∠ADC.Now AD || BC⇒ ∠D+∠C=180∘∴ 2∠6+2∠1=180∘∵ DE and Ce are bisectors.∠6+∠1=180∘2∠6+∠1=90∘But ∠DEC+∠6+∠1=180∘∴ ∠DEC+90∘=180∘ ∠DEC=180∘−90∘ ∠DEC=90∘Hence the result.