The correct option is C 27
(x3+2x2+x+4)15=a0+a1x+a2x2+…+a45x45Differentiating w.r.t. x, we get15(x3+2x2+x+4)14(3x2+4x+1)=a1+2a2x+3a3x2…+45a45x44Differentiating again w.r.t. x, we get15[14(x3+2x2+x+4)13(3x2+4x+1)2+(x3+2x2+x+4)14(6x+4)]=2a2+6a3x…+1980a45x43Putting x=0, we get2a2=15×413×(14+16)⇒a2=226×32×52So, a2 is not divisible by 27.