Let (1+x+x2)2014=a0+a1x+a2x2+a3x3+....+a4028x4028 and letA=a0−a3+a6−......+a4026,B=a1−a4+a7−......−a4027,C=a2−a5+a8−......+a4028Then
|A|=|C|>|B|
(1+x+x2)2014=a0+a1x+a2x2+a3x3+a4x4+a5x5+a6x6+.....Substituting −1,−ω,−ω2 where −ω=ei2π31=a0−a1+a2−a3+a4−a5+a6 ...(i)(1−ω+ω2)2014=a0−a1ω+a2ω2−a3+a4ω−a5ω2+a6.........(ii)(1−ω2+ω)2014=a0−a1ω2+a2ω−a3+a4ω2−a5ω+a6.......(iii)(i)+(ii)+(iii)⇒a0−a3+a6....=1+22014(ω+ω2)3=1−220143(i)+ω2(ii)+ω(iii)⇒a1−a4+a,....=−(1+220153)(i)+ω(ii)+ω2(iii)⇒a2−a5+a8....=1−220143
⇒ |A|=|C|<|B|