The correct option is C a3+b3+c3−3abc=0
∵1a,1b,1care in arithmetic progression∴b=2aca+c ....[1]and a, b, -2c are in geometric progression,∴b2=−2ac ....[2]From [1] and [2], we getb=−b2a+c⇒a+b+c=0∴a3+b3+c3−3abc=0Also, (a+c)2=(−b)2⇒a2+c2−b2=b2⇒a2+c2=2b2∴a2, b2, c2 are not in harmonic progressionAlso, b4=4a2c2∴a2, b2, 4c2 are in geometric progression